Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2253, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480733

RESUMO

Ultrasound is an acoustic wave which can noninvasively penetrate the skull to deep brain regions, enabling neuromodulation. However, conventional ultrasound's spatial resolution is diffraction-limited and low-precision. Here, we report acoustic nanobubble-mediated ultrasound stimulation capable of localizing ultrasound's effects to only the desired brain region in male mice. By varying the delivery site of nanobubbles, ultrasound could activate specific regions of the mouse motor cortex, evoking EMG signaling and limb movement, and could also, separately, activate one of two nearby deep brain regions to elicit distinct behaviors (freezing or rotation). Sonicated neurons displayed reversible, low-latency calcium responses and increased c-Fos expression in the sub-millimeter-scale region with nanobubbles present. Ultrasound stimulation of the relevant region also modified depression-like behavior in a mouse model. We also provide evidence of a role for mechanosensitive ion channels. Altogether, our treatment scheme allows spatially-targetable, repeatable and temporally-precise activation of deep brain circuits for neuromodulation without needing genetic modification.


Assuntos
Encéfalo , Crânio , Masculino , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Ultrassonografia , Ondas Ultrassônicas , Movimento
2.
Biochim Biophys Acta Biomembr ; 1865(7): 184195, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37353068

RESUMO

Numerous cellular processes are regulated by Ca2+ signals, and the endoplasmic reticulum (ER) membrane's inositol triphosphate receptor (IP3R) is critical for modulating intracellular Ca2+ dynamics. The IP3Rs are seen to be clustered in a variety of cell types. The combination of IP3Rs clustering and IP3Rs-mediated Ca2+-induced Ca2+ release results in the hierarchical organization of the Ca2+ signals, which challenges the numerical simulation given the multiple spatial and temporal scales that must be covered. The previous methods rather ignore the spatial feature of IP3Rs or fail to coordinate the conflicts between the real biological relevance and the computational cost. In this work, a general and efficient reduced-lattice model is presented for the simulation of IP3Rs-mediated multiscale Ca2+ dynamics. The model highlights biological details that make up the majority of the calcium events, including IP3Rs clustering and calcium domains, and it reduces the complexity by approximating the minor details. The model's extensibility provides fresh insights into the function of IP3Rs in producing global Ca2+ events and supports the research under more physiological circumstances. Our work contributes to a novel toolkit for modeling multiscale Ca2+ dynamics and advances knowledge of Ca2+ signals.


Assuntos
Sinalização do Cálcio , Cálcio , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Simulação por Computador , Receptores de Inositol 1,4,5-Trifosfato/metabolismo
3.
Front Netw Physiol ; 3: 1111306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926546

RESUMO

Astrocytic fine processes are the most minor structures of astrocytes but host much of the Ca2+ activity. These localized Ca2+ signals spatially restricted to microdomains are crucial for information processing and synaptic transmission. However, the mechanistic link between astrocytic nanoscale processes and microdomain Ca2+ activity remains hazily understood because of the technical difficulties in accessing this structurally unresolved region. In this study, we used computational models to disentangle the intricate relations of morphology and local Ca2+ dynamics involved in astrocytic fine processes. We aimed to answer: 1) how nano-morphology affects local Ca2+ activity and synaptic transmission, 2) and how fine processes affect Ca2+ activity of large process they connect. To address these issues, we undertook the following two computational modeling: 1) we integrated the in vivo astrocyte morphological data from a recent study performed with super-resolution microscopy that discriminates sub-compartments of various shapes, referred to as nodes and shafts to a classic IP3R-mediated Ca2+ signaling framework describing the intracellular Ca2+ dynamics, 2) we proposed a node-based tripartite synapse model linking with astrocytic morphology to predict the effect of structural deficits of astrocytes on synaptic transmission. Extensive simulations provided us with several biological insights: 1) the width of nodes and shafts could strongly influence the spatiotemporal variability of Ca2+ signals properties but what indeed determined the Ca2+ activity was the width ratio between nodes and shafts, 2) the connectivity of nodes to larger processes markedly shaped the Ca2+ signal of the parent process rather than nodes morphology itself, 3) the morphological changes of astrocytic part might potentially induce the abnormality of synaptic transmission by affecting the level of glutamate at tripartite synapses. Taken together, this comprehensive model which integrated theoretical computation and in vivo morphological data highlights the role of the nanomorphology of astrocytes in signal transmission and its possible mechanisms related to pathological conditions.

4.
Front Physiol ; 12: 767892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777023

RESUMO

The accumulation of amyloid ß peptide (Aß) in the brain is hypothesized to be the major factor driving Alzheimer's disease (AD) pathogenesis. Mounting evidence suggests that astrocytes are the primary target of Aß neurotoxicity. Aß is known to interfere with multiple calcium fluxes, thus disrupting the calcium homeostasis regulation of astrocytes, which are likely to produce calcium oscillations. Ca2+ dyshomeostasis has been observed to precede the appearance of clinical symptoms of AD; however, it is experimentally very difficult to investigate the interactions of many mechanisms. Given that Ca2+ disruption is ubiquitously involved in AD progression, it is likely that focusing on Ca2+ dysregulation may serve as a potential therapeutic approach to preventing or treating AD, while current hypotheses concerning AD have so far failed to yield curable therapies. For this purpose, we derive and investigate a concise mathematical model for Aß-mediated multi-pathway astrocytic intracellular Ca2+ dynamics. This model accounts for how Aß affects various fluxes contributions through voltage-gated calcium channels, Aß-formed channels and ryanodine receptors. Bifurcation analysis of Aß level, which reflected the corresponding progression of the disease, revealed that Aß significantly induced the increasing [Ca2+] i and frequency of calcium oscillations. The influence of inositol 1,4,5-trisphosphate production (IP3) is also investigated in the presence of Aß as well as the impact of changes in resting membrane potential. In turn, the Ca2+ flux can be considerably changed by exerting specific interventions, such as ion channel blockers or receptor antagonists. By doing so, a "combination therapy" targeting multiple pathways simultaneously has finally been demonstrated to be more effective. This study helps to better understand the effect of Aß, and our findings provide new insight into the treatment of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...